If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 2(3k2) + -1 = 6(2k + -1) Remove parenthesis around (3k2) 2 * 3k2 + -1 = 6(2k + -1) Multiply 2 * 3 6k2 + -1 = 6(2k + -1) Reorder the terms: -1 + 6k2 = 6(2k + -1) Reorder the terms: -1 + 6k2 = 6(-1 + 2k) -1 + 6k2 = (-1 * 6 + 2k * 6) -1 + 6k2 = (-6 + 12k) Solving -1 + 6k2 = -6 + 12k Solving for variable 'k'. Reorder the terms: -1 + 6 + -12k + 6k2 = -6 + 12k + 6 + -12k Combine like terms: -1 + 6 = 5 5 + -12k + 6k2 = -6 + 12k + 6 + -12k Reorder the terms: 5 + -12k + 6k2 = -6 + 6 + 12k + -12k Combine like terms: -6 + 6 = 0 5 + -12k + 6k2 = 0 + 12k + -12k 5 + -12k + 6k2 = 12k + -12k Combine like terms: 12k + -12k = 0 5 + -12k + 6k2 = 0 Begin completing the square. Divide all terms by 6 the coefficient of the squared term: Divide each side by '6'. 0.8333333333 + -2k + k2 = 0 Move the constant term to the right: Add '-0.8333333333' to each side of the equation. 0.8333333333 + -2k + -0.8333333333 + k2 = 0 + -0.8333333333 Reorder the terms: 0.8333333333 + -0.8333333333 + -2k + k2 = 0 + -0.8333333333 Combine like terms: 0.8333333333 + -0.8333333333 = 0.0000000000 0.0000000000 + -2k + k2 = 0 + -0.8333333333 -2k + k2 = 0 + -0.8333333333 Combine like terms: 0 + -0.8333333333 = -0.8333333333 -2k + k2 = -0.8333333333 The k term is -2k. Take half its coefficient (-1). Square it (1) and add it to both sides. Add '1' to each side of the equation. -2k + 1 + k2 = -0.8333333333 + 1 Reorder the terms: 1 + -2k + k2 = -0.8333333333 + 1 Combine like terms: -0.8333333333 + 1 = 0.1666666667 1 + -2k + k2 = 0.1666666667 Factor a perfect square on the left side: (k + -1)(k + -1) = 0.1666666667 Calculate the square root of the right side: 0.408248291 Break this problem into two subproblems by setting (k + -1) equal to 0.408248291 and -0.408248291.Subproblem 1
k + -1 = 0.408248291 Simplifying k + -1 = 0.408248291 Reorder the terms: -1 + k = 0.408248291 Solving -1 + k = 0.408248291 Solving for variable 'k'. Move all terms containing k to the left, all other terms to the right. Add '1' to each side of the equation. -1 + 1 + k = 0.408248291 + 1 Combine like terms: -1 + 1 = 0 0 + k = 0.408248291 + 1 k = 0.408248291 + 1 Combine like terms: 0.408248291 + 1 = 1.408248291 k = 1.408248291 Simplifying k = 1.408248291Subproblem 2
k + -1 = -0.408248291 Simplifying k + -1 = -0.408248291 Reorder the terms: -1 + k = -0.408248291 Solving -1 + k = -0.408248291 Solving for variable 'k'. Move all terms containing k to the left, all other terms to the right. Add '1' to each side of the equation. -1 + 1 + k = -0.408248291 + 1 Combine like terms: -1 + 1 = 0 0 + k = -0.408248291 + 1 k = -0.408248291 + 1 Combine like terms: -0.408248291 + 1 = 0.591751709 k = 0.591751709 Simplifying k = 0.591751709Solution
The solution to the problem is based on the solutions from the subproblems. k = {1.408248291, 0.591751709}
| 2-6(4y-2)=3y-4y | | 7(2z+4)=2(3z+4) | | 8(2y+4)=4y+1-3y | | 3+3n=-n-13 | | 6(3z+1)=2(z+3) | | 8u+2=66 | | 50-4z=z-40 | | k-7=5-8k+7k | | 13.2e+54.41=7.1e-1.1 | | 2.1y+5.1=7.41 | | 13w+38=8w-2 | | 6x+7y=97 | | 3p-5p=18+9p-3+4p | | 7y+5=3y-31 | | x+3y=1 | | 3(2p+3)=4(p+9)-3 | | 50=40-2(5x-10)-70 | | 5(5m+2)=3(7m+2) | | -(x-3)-(2x-5)=-7x+5x | | -9n+5(6-7n)=4(n-4)-2 | | 2-3(2x-5)=-13 | | -8(1+2x)=-28-6x | | 9(y+4)= | | 65-4x=136-45x | | -6(n-1)=2-5n | | -30=6x-10-8x-40 | | 11-10x=136-45x | | x(x+3)=10 | | 7(k-9)=-45+9k | | 4(8x-6)=-24-6x | | (19x)y= | | x+22+2x=-7-2x-11 |